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ABSTRACT

Image description constitutes a major part of matching-based
tasks in computer vision. The size of descriptors becomes
more important for retrieval tasks in large datasets. In this pa-
per, we propose a compact and robust image description algo-
rithm for image retrieval, which consists of three main stages:
salient patch extraction, affine invariant feature computation
over concentric elliptical tracks on the patch, and global fea-
ture incorporation. We evaluate the performance of our al-
gorithm for region-based image retrieval and image reuse de-
tection, a special case of image retrieval. We present a novel
synthetic image reuse dataset, which is generated by super-
imposing objects on different background images with sys-
tematic transformations. Our results show that the proposed
descriptor is effective for this problem.

1. INTRODUCTION

The development of multimedia technologies has enabled us
to easily create and store digital images, and consequently led
to an emergence of large scale image datasets. Efficient detec-
tion and description of the important parts of images becomes
crucial in order to provide functionality for content-based ac-
cess to image datasets. Early content-based image retrieval
(CBIR) methods used global features [1], which were com-
puted over whole images and lacked object-level information.
Local features, on the other hand, provide a more detailed de-
scription of images by extracting features around local key-
points. Many local feature based approaches have been pro-
posed [2, 3, 4] and compared [5, 6, 7] in the literature. Even
though local descriptors are quite successful in detecting cor-
respondences between images, they typically produce large
and computationally expensive image descriptors, which are
not efficient to use for image retrieval in large scale datasets.
Bag of visual words (BoW) approach is commonly adopted to
represent images with smaller feature vectors by generating
visual codebooks using keypoint based local features. How-
ever, as noted in [8], the vector quantization step in codebook
generation constitutes a bottleneck and reduces the scalability
of the system.

In this paper, we present a new method, called Affine In-
variant Salient Patch (AISP) descriptors, for describing im-
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ages with low dimensional feature vectors. The images are
represented mainly by foreground regions in our descriptors.
We make use of the global contrast based salient region detec-
tion method [9] as a good estimator of foreground regions in
images. Then, we extract affine invariant features from the es-
timated foreground region, i.e. the salient patch, by dividing
it into concentric elliptical tracks. We also add global features
to our final descriptor in order to achieve an admissible level
of context independence for foreground objects.

The rest of the paper is organized as follows: Section 2
gives an overview of the AISP algorithm; Section 3 describes
the related work in the literature; Section 4 introduces the syn-
thetic image reuse dataset and presents experimental results;
finally, Section 5 gives conclusions and future work.

2. AFFINE INVARIANT SALIENT PATCH
DESCRIPTORS

Our proposed approach consists of three main steps: salient
patch detection (Section 2.1), affine invariant feature extrac-
tion (Section 2.2), and addition of global features (Section
2.3). The result is a compact descriptor obtained from a given
image. Matching of the descriptor is achieved with standard-
ized Euclidean distance, which balances out the contributions
of different features.

2.1. Salient Patch Detection

We estimate the location of a foreground object by estimating
image saliency, which refers to the prominence and unique-
ness of a region relative to its neighbors. For salient patch
extraction, we use the saliency map approach of Cheng et al.
[9], which can be summarized as follows. For each pixel,
histogram-based saliency values are computed, where saliency
values are defined proportional to the total color distance to
every other pixel in the image. In order to obtain region-level
saliency information, the input image is segmented into re-
gions. For each region, a weighted average of pixel saliency
values are computed by incorporating distances to increase
the importance of contrast to closer regions. The final saliency
map is thresholded iteratively as described in [9], and the re-
sultant binary image is used as a segmentation mask used for
extraction of foreground region and computation of affine in-
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Fig. 1. Example of salient patch extraction.

variant elliptical tracks over the region (Section 2.2). An ex-
ample of salient patch extraction is shown in Fig. 1.

2.2. Affine Invariant Feature Extraction

In order to achieve affine invariance, we define elliptical con-
centric tracks over the salient patch on the image. We use
moments of the binary shape generated by the salient region
detector to fit an ellipse to the salient patch. Given a bi-
nary shape S the centroid (mx,my) of the salient patch is
obtained. Then, the central moments are computed as:

µij =

∑
x

∑
y(x−mx)i(y −my)jS(x, y)∑

x

∑
y S(x, y)

(1)

The principal orientation of the shape is calculated as fol-
lows:
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1

2
tan−1

(
2µ11
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)
(2)

Then, θm is assigned to the descriptor as the main orien-
tation. The semimajor and semiminor axis lengths of the best
fitting ellipse are calculated as follows [10]:
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11 (4)

After defining the fitting ellipse of the salient patch, we
divide the ellipse into four equal breadth concentric tracks as
illustrated in Fig. 2. We assume in this work that the im-
ages are in the HSV color space, and for each track, we com-
pute 8-bin color histograms for each of the color channels in
addition to 8-bin edge-orientation histograms. Hue, satura-
tion and brightness components of the image are first used for
color histogram computation, then the brightness component
is kept for edge orientation calculation.

In the edge orientation histogram computation step, sim-
ilar to the Histogram of Oriented Gradients [11] approach,
each pixel in the salient patch votes in its corresponding track
for its orientation, weighted with the edge magnitude. In other
terms, let ti be a vector that contains the x and y indices of
the pixels in the ith elliptical track. A histogram, H(i, θ), can

Fig. 2. Illustration of AISP descriptors on an image.

be defined as:

ti = [xiyi] (5)

H(i, θk) =
∑
j

M(θk−1 < Θ(xi,j,yi,j) ≤ θk) (6)

where θk denotes the upper boundary angle for the kth bin
(θ0 = 0). M(x, y) and Θ(x, y) refer to the edge magnitude
and orientation of the corresponding pixel, respectively, cal-
culated as

M(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (7)

Θ(x, y) = tan−1(Gy(x, y)/Gx(x, y)) − θm (8)

Gx(x, y) = B(x+ 1, y) −B(x− 1, y) (9)

Gy(x, y) = B(x, y + 1) −B(x, y − 1) (10)

where Gx and Gy are the horizontal and vertical brightness
image (B) gradients, which are computed by using a discrete
derivative filter. We achieve rotation invariance by subtracting
the main orientation (Eqn. 2) from orientation values for each
pixel (Eqn. 8).

Our descriptors are mostly rotation invariant. However,
the edge-based features that we use are not robust to 180 de-
gree rotations and flips, since we define the orientation assign-
ment variable over the binary shape. We integrate both color
and edge based features into our descriptor so that one type of
feature can compensate for the weaknesses of the other.

2.3. Addition of Global Features and Normalization

In many cases, complete context independence of the fore-
ground object might not be desired. Thus, in addition to
the features computed over the salient patch, we also incor-
porate global features into our final descriptor. Addition of
global features also decreases the dependence on the salient
object detection if the salient object is large enough (i.e. used
as a background). We compute the color and edge orienta-
tion histograms over the whole image, treating it like a sin-
gle track. These features are added to the final descriptor
having the same weight as a single track. As a final step
all histograms are normalized to be a unit vector. Although
the number of tracks and bins are tunable parameters, in our



experiments we use 4-track 8-bin descriptors. Including the
global features, we obtain a 160-dimensional ((#tracks +
1) × #histograms× #bins) feature vector for each image.

3. RELATED WORK

The closest work to ours is probably the rotation invariant
feature transform (RIFT) by Lazebnik et al. [4], which de-
fines circular rings on normalized affine regions. However,
there are significant differences between [4] and the presented
method including the definition of salient regions and extrac-
tion of features. Lazebnik et al. extract a set of elliptical
regions from an image, whereas we extract one relatively big-
ger salient region in which the foreground object is likely to
appear. In order to accomplish affine invariance, the RIFT
approach transforms the ellipses into circles and extracts fea-
tures from the circles. The authors define the descriptors rota-
tionally invariant, instead of performing an orientation assign-
ment, since the affine regions they compute are not suitable
for dominant orientation estimation. However, a salient patch
enables us to compute the main orientation using image mo-
ments. Our method does not require image remapping, since
the orientation assignment is achieved by subtracting the main
orientation from the angles of the corresponding pixels. An-
other major difference of our method from RIFT features and
other local descriptors is that our method produces signifi-
cantly smaller descriptors. Since object detection is not our
concern here, we focus on improving accuracy versus descrip-
tor size.

A similar problem, partial duplicate image search, is ad-
dressed by Zhou et al. [12], where the authors use BoW with
SIFT descriptors. In our experimental results, we compare the
BoW - SIFT approach with our method in general, instead of
addressing a single previous work, since it is a common ap-
proach that is adopted by many CBIR systems.

4. DATASET AND EXPERIMENTAL RESULTS

In this section we first introduce an artificial image dataset,
and then we evaluate our algorithm for region-based image
retrieval by comparing it to the BoW approach. As a bench-
mark, we also use the COREL database [13], which is a 80-
category and 10,800-instance image database.

Our synthetic dataset consists of 1530 modified images,
which are produced by overlaying a set of foreground objects
onto background images with random positions. The back-
ground images are crawled from the web, and the foreground
objects are extracted from the images in the 2012 PASCAL
Visual Object Classes [14] dataset using the segmentation in-
formation of the dataset.

In order to measure the robustness of our descriptors to
various modifications, we define six types of changes: rota-
tion, aspect ratio change, shearing, blur, color change, and

translation with no transformation. For each type, we ap-
ply corresponding transformations with randomized parame-
ters to a random set of foreground objects, and we generate
an image set by superimposing foreground objects on ran-
domly selected background images. To prevent any possi-
ble memorization of a specific linear transform due to over-
training, transformation parameters are selected randomly for
each instance within the following ranges: [0 90] degrees
for rotation, [0.5 2] for aspect ratio, [0 0.5] for shear factor,
[0 10] sigma and 5-pixel radius for Gaussian blur, and for
color change [0 50] percent circular value shift for each of the
color channels. Each category in the dataset has 255 images,
and each image has only one corresponding foreground im-
age in the folder of original foreground images. To test the
retrieval performance, AISP features are computed for 1530
modified images and their corresponding original foreground
images. For each modified image, original image descriptors
are ranked according to their similarity, which is defined in-
versely proportional to the standardized Euclidean distance,
where the feature dimensions are scaled by their standard de-
viations.

We illustrate our experimental results with Cumulative
Matching Characteristic (CMC) curves, which represent the
cumulative retrieval accuracy against the rank of retrieved in-
stances. For the AISP descriptors, Fig. 3 shows the contri-
bution of the features that are extracted from the estimated
salient object. For comparison, SIFT features are computed
for the synthetic dataset, and a codebook is generated using
the BoW approach. The number of clusters are selected as
160, 320, and 640 in order to make the dimensionality of
codebook comparable to the default size of AISP descriptors.
The results are shown in Fig. 4. Even though the SIFT de-
scriptor do not employ color features, the results show that
the retrieval performance is affected by color transformations,
since an excessive change in a color channel may alter the
edges. In our experiments on the COREL database, we com-
pared each image with every other image in the database and
considered the result positive if the retrieved image is in the
same category. The first, tenth, and twentieth rank retrieval
performances are observed as 25.3, 50.7, and 62.5 percent,
respectively.

5. CONCLUSIONS AND FUTURE WORK

We proposed a low dimensional image description method for
image retrieval. In particular, we focused on object-level re-
trieval, which puts more emphasis on the foreground object
than the background scene. The major contribution of our
method is that it provides a compact representation of images
for object-level image access. Our algorithm performed sig-
nificantly better than BoW approach with SIFT descriptors
when the codebook size is set equal to the size of AISP de-
scriptors.

A potential future work can be developing a more compu-
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Fig. 3. Cumulative matching accuracies of AISP descriptors.
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(a) 160 Clusters
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Fig. 4. Cumulative matching accuracies of BoW with SIFT descriptors for 160, 320, and 640 clusters.

tationally efficient method for saliency-based object segmen-
tation, since it forms the bottleneck in our algorithm. Another
improvement can be parametrizing the importance of color
and edge based features by using a weighting scheme to ad-
just the invariance to different types of transformations.
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